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1.1 Overview

My research lies in the intersection of Probability, Mathematical Physics, and Algebra, in
the field of Random Matrix Theory. Currently I study the solvability of β-ensembles of
random matrices for integer values of β beyond 1, 2 and 4.

Random matrix theory is the study of the eigenvalue statistics of ensembles of matrices,
which are a collection of (typically) square matrices along with a probability measure defined
on this set. Often, the probability measure is presented as the distribution of individual
entries of the matrix, and then extended to the entire collection by specifying the inter-
entry dependence. This probability measure then induces a probability measure on the
eigenvalues of the matrix. Although a rich field of study on its own, random matrix theory
also enjoys rather abundant application throughout mathematics and physics, since the
eigenvalue statistics of many matrix ensembles can be used to model a wide variety of
phenomena. The statistics of discrete energy levels in atomic spectra bear many of the
same features as the eigenvalues of Hermitian matrices. Additionally, these same Hermitian
ensembles can be used to describe the dynamics of a multi-particle system in one dimension
interacting via a repulsive force and subject to a fixed potential. Alternatively, the Wishart
ensemble of matrices can be used in the estimation of the covariance matrix for a population
vector, given a large sample. The widespread applicability of random matrices evinces a
universal paradigm—a collection of theorems akin to the classical Central Limit Theorem.
But the utility of such theorems depends on an available supply of solvable ensembles in
each universality class—collections of matrices for which the densities of eigenvalues can be
expressed in terms of ‘known’ functions whose properties and asymptotics are well-studied.

The β-ensembles are one such collection, and are composed of random matrices whose
eigenvalue densities take a common form, indexed by a non-negative, real parameter β.
The classic β-ensembles (β = 1, 2, 4) correspond to Hermitian matrices with real, complex,
or quaternionic Gaussian entries, and were first studied in the 1920s by John Wishart in
multivariate statistics [17] and the 1950s by Eugene Wigner in nuclear physics [16]. In the
subsequent decade, Freeman Dyson [7] unified a previously disparate collection of random
matrix models by demonstrating that the three classic β-ensembles are each variations of
a single action on random Hermitian matrices (representing the three associative division
algebras over R). More recently, the development [6] of matrix models representing arbitrary,
non-negative values of β, as well as the discovery and expansion of Central Limit Theory-
like results [12] lead to a renewed focus on these ensembles. In addition to their historical
role in the development of random matrix theory, the classic β-ensembles remain essential
to the current study of random matrices due to their membership in the class of integrable
probability models—a somewhat nebulously-defined collection of objects which are enriched
by some essential, overarching algebraic structure. The β = 2 ensemble is an example of
a determinantal point process, while the β = 1, 4 ensembles are examples of Pfaffian point
processes.

My current research uses tools from the exterior and shuffle algebras in order to unify
the structure of the β = 1, 2, 4 ensembles, and to eventually represent β-ensembles as Hy-
perpfaffian point processes, when β is a square integer.
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1.2 Background

1.2.1 β-Ensembles

In the sequel, suppose µ is a finite measure on R (historically, dµ(x) = exp(−x2/2)dx). For
each β ∈ R+, consider the N -point process specified by the joint probability density

ρN (x1, . . . , xN ) =
1

ZN (β)N !

∏
i<j

|xi − xj |β

where ZN (β) denotes the partition function of β, and is the normalizing constant required
for ρN to be a probability density function. For each 1 ≤ n ≤ N , define the nth correlation
function by

Rn(x1, . . . , xn) =
1

ZN (β)(N − n)!

∫
RN−n

ρN (x1, . . . , xn, y1, . . . , yN−n) dN−nµ(y)

where dN−nµ(y) denotes the (N −n)-fold product measure on RN−n. For β-ensembles, the
correlation functions are nothing more than rescaled marginal density functions, and are
completely determined by the joint density function. However, the study the local statistics
of the ensemble is made simpler by using the correlation functions in place of the marginal
densities.

When β = 1, 2, or 4, these correlation functions can be rewritten in a particularly nice
form. For β = 2, elementary matrix operations and Fubini’s Theorem can be used to show
that

Rn(x1, . . . , xn) =
1

ZN (2)
det (K(xi, xj)1≤i,j≤n)

where the kernel K(x, y) is a certain square integrable function R× R→ R that can most
easily be expressed in terms of the orthogonal polynomials for the measure µ. The details
of this derivation are given in [12].

And for β = 1 or 4,

Rn(x1, . . . , xn) =
1

ZN (β)
Pf (K(xi, xj)1≤i,j≤n)

where Pf(A) denotes the Pfaffian of an antisymmetric matrix A (with Pf(A) :=
√

det(A))
and where K(x, y) is an antisymmetric matrix kernel. This result was first shown for
Hermitian ensembles by Mehta in [11], and then for general weights by Mehta and Mahoux
in [8] (except for the case β = 1 and N odd). Finally, the last remaining case was given by
Adler, Forrester and Nagao in [10]

Of fundamental concern in the theory of random matrices is the behavior of eigenvalue
statistics of matrix ensembles as N →∞. The immediate advantage of these determinantal
and Pfaffian formulations for the correlation functions is that the fundamental characteristics
of the eigenvalues are encoded in the kernel function, which does not increase in complexity
as N grows large, considerably simplifying the asymptotic analysis of the β-ensemble.

1.2.2 The Method of Tracy and Widom

Derivations of the determinantal/Pfaffian forms of the correlation functions have been pre-
sented in numerous guises over the past several decades. However, of particular note is
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the method of Tracy and Widom [15], which evokes the underlying algebraic structure of
the ensemble, and proceeds by first establishing that the partition function ZN (β) takes a
determinant/Pfaffian form, and then uses the Sylvester Determinant Identity

det(Im +BA) = det(In +AB) A ∈Mn×m(R), B ∈Mm×n(R)

to show that the correlation functions must have the same form as well. For β = 2, the
result follows almost immediately from the application of the Sylvester Identity, while the
proof in the case when β is 1 or 4 required considerably more ingenuity.

This complication arises chiefly from the fact that, for most of the history of random ma-
trix theory, results involving Pfaffians were often stated in terms of a quaterion determinant
of a matrix, and calculations involving the Pfaffian were performed by first transforming the
expressions into corresponding ones involving the determinant. However, the Pfaffian can
also be viewed in an independent light as a particular evaluation in the exterior algebra of
a vector space, and doing so allows for further generalization of the Tracy-Widom method.

1.2.3 The Exterior Algebra

For a vector space of finite even dimension N = 2M , the kth exterior power
∧k

V of V
consists of all antisymmetric k-tensors of elements in V , and the exterior algebra

∧
V is

formed from the direct sum of all the exterior powers of V , with multiplication given by the
antisymmetric tensor operation. Of key importance is the exterior square

∧2
V , whose ele-

ments bijectively correspond to N ×N antisymmetric matrices. Under this correspondence,
the Pfaffian of an antisymmetric matrix A can be obtained by taking the Mth power of the
associated antisymmetric tensor. That is, if {v1, . . . , vn} is a basis for V and ω ∈

∧2
V is

the antisymmetric tensor associated with the matrix A, then

ω∧M

M !
= (PfA) v1 ∧ · · · ∧ vN

But from this perspective, Pfaffian identities naturally arise as structural properties of the
exterior algebra. In particular, the Sylvester Determinant Identity has a Pfaffian analogue

Pf(Z−1 +BTAB)

PfZ−1
=

Pf(A−1 +BZBT )

PfA−1
A ∈Mn(R), B ∈Mn×m(R), Z ∈Mm(R)

which then can be used to give a nearly identical proof of the Pfaffian form for the β = 1, 4
correlation functions as was used to prove the determinantal form for the β = 2 correlation
functions.

1.2.4 Partition Functions as Pfaffians

For the classical β-ensembles, the first step for rewriting the correlation functions as de-
terminants/Pfaffians is to observe that the partition function ZN (β) is itself a determi-
nant/Pfaffian of a matrix of integrals of appropriately chosen orthogonal polynomials. One
way to do so is to apply the Andreief determinant identity [1] to the partition function
ZN (β). The result follows immediately when β = 2, and by viewing the Pfaffian as the
square root of a determinant, the result can also be shown when β = 1, 4 with some addi-
tional finesse. But when the Pfaffian is viewed from the context of the exterior algebra, the
Andreief determinant identity can be extended to analogous Pfaffian identities (referred to
in the literature as the de Bruijn identities [5]). In fact, adopting this perspective illuminates



4 Research Statement

an underlying algebraic structure, allowing the identity to be further generalized in the case
when β is an arbitrary square integer.

Recalling the exterior algebra definition of the Pfaffian of an antisymmetric 2-tensor, we
can define the Hyperpfaffian, Pf(L)(ω), of an antisymmetric L-tensor ω ∈

∧L
V by

ω∧K

K!
= (Pf(L)ω) v1 ∧ · · · ∧ vN ,

provided that V has dimension N = KL.
In 2002, Jean-Gabriel Luque and Jean-Ives Thibon [9] used techniques in the shuffle

algebra to show that when β = L2 is an even square integer, the partition function ZN (β)
can be written as a Hyperpfaffian of an L form whose coefficients are integrals of Wronskians
of suitable orthogonal polynomials. Then in 2011, Chris Sinclair [14] used combinatorial
methods to show that the result also holds when β is an odd square integer.

In fact, as I show in a paper currently in preparation (and as outlined below) the shuffle
algebra techniques first implemented by Thibon and Luque can, with some modification, be
adopted to give a universal proof that ZN (β) can be written as a Hyperpfaffian when β is
a square integer, regardless of whether β is even or odd.

1.3 Current Research

1.3.1 The Shuffle Algebra and de Bruijn’s Identities

Given a set A and ring R, the shuffle algebra can be obtained by endowing the free R-algebra
on A, R〈A〉, with an additional product �, which is first defined on basis elements and then
extended linearly. For words v = u1 . . . uk and w = uk+1 . . . uk+n in R〈A〉, let

v� w :=
∑

σ∈Sh(k,n)

uσ−1(1) . . . uσ−1(n+k)

where Sh(k, n) is the subset of the symmetric group on n+ k letters consisting of permuta-
tions satisfying

σ(1) < · · · < σ(k) σ(k + 1) < · · · < σ(n).

That is, given two words v and w of length k and n, the product v � w is the sum of all(
n+k
k

)
words formed by interlacing the letters in v and w.

While the shuffle algebra is of great interest in its own right in representation theory and
combinatorics (If V is a free R-module and V ∗ is its algebraic dual space, then R〈V ∗〉� is
isomorphic as a Hopf algebra to the graded dual of the tensor algebra T (V ) [13]), of more
immediate relevance, it also appears to be the correct setting for performing the iterated
integrals that appear in calculations of the partition function, ZN (β).

In particular, since the joint density function ρN (x) for the β-ensemble is completely
symmetric in the N variables, it can be restricted to the N -simplex ∆N = {x1 < · · · < xN}
at the cost of a combinatorial factor N !. That is,

ZN (β) =

∫ ∏
i<j

|xi − xj |β dNµ(x) = N !

∫
∆N

∏
i<j

(xi − xj)βdNµ(x).

This has the added benefit of eliminating a pesky absolute value sign in the case when β is
an odd integer.



Jonathan Wells 5

Now, take A to be a vector space of suitably integrable functions (say, A = L2(R, µ),

where dµ(x) = e−x
2/2 dx) and define a linear functional 〈−〉 on R〈A〉� by∫

∆N

f1(x1) · · · fn(xn) dµ(x) where f1 · · · fn is a word in R〈A〉� .

Then 〈−〉 is, in fact, an algebra homomorphism, in the sense that〈
(f1 · · · fk)� (fk+1 · · · fk+n)

〉
=
〈
f1 · · · fk

〉
·
〈
fk+1 · · · fk+n

〉
.

This result is equivalent to the celebrated lemma first proved by K.T. Chen in the context
of cohomology of loop space [4].

With this lemma in hand, the de Bruijn identities for β = L2 can now be recovered:

Theorem (Wells). Suppose N and L are positive integers, that p = {p1, p2, . . . , pN ;x} is
a complete family of monic orthogonal polynomials in the variable x, that I = {il} and
J = {jk} are subsets of {1, . . . , N} of size L, that vI = vi1 ∧ · · · ∧ viL , and that Wr(pI ;x) is
the Wronskian of a subset pI = {pi1 , . . . , piL ;x}. Then

1. if β = L2 is even,

ZN (β) =

〈∏
i<j

(xi − xj)β
〉

= Pf(L)
(〈

Wr(pI ;x)
〉
vI

)

2. if β = L2 is odd and N is even,

ZN (β) =

〈∏
i<j

(xi − xj)β
〉

= Pf(L)
([〈

Wr(pI ;x)
〉
vI

]
∧
[〈

Wr(pJ ; y)
〉
vJ

])

The outline of this proof goes as follows: first, the integrand in ZN (β) is expressed as

ZN (β) =
∏
i<j

(xi − xj)β = Pf(L)
� (Wr(pi1 , . . . , piL)vi1 ∧ · · · ∧ viL) (1)

where Pf(L)
� denotes the Hyperpfaffian of an L-tensor with coefficients in the shuffle algebra

R〈A〉�. And second, the 〈−〉 homomorphism is applied to both sides of equation (1).
It is worth highlighting that the shuffle algebra proved its utility twice over (once in

decomposing the Vandermonde power
∏
i<j(xi−xj)β as a Hyperpfaffian, and once again in

facilitating the evaluation of the iterated integral of a product), evincing the fundamental
algebraic structure of this problem.

1.3.2 Identities in the Exterior Algebra

Several algebraic identities of the determinant (the Laplace Expansion, the Cauchy-Binet
Formula, and the Jacobi Minor Inverse Formula, for example) have been well-studied since
the days of Jacobi, Cayley, and Sylvester. Given that the Pfaffian is the square root of
the determinant, it is not terribly surprising that many of these identities have a Pfaffian
analogue (a few of which appear in other guises elsewhere in the literature as the famed Wick
Formulas [3],[2]). However, by representing an antisymmetric matrix as an antisymmetric
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2-tensor, many of these Pfaffian identities can be realized simply as structural properties
of the exterior algebra. And moreover, by adopting this perspective, it becomes clear that
there is little unique about the Pfaffian of an antisymmetric 2-tensor—many of the same
identities also hold for the Hyperpfaffian of an antisymmetric L-tensor.

Concise statements of the Laplace Expansion, the Cauchy-Binet formula, the Jacobi
Minor Inverse formula, and the Sylvester identity are facilitated by introducing two auxillary
transformations on the exterior algebra as follows:

For ω ∈
∧L

V , define exp(ω) ∈
∧
V by

exp(ω) =
∑
k=1

ω∧k

k!

and note that exp(ω) is actually a finite sum, since ω∧k = 0 for all k with kL > dimV . The

Hodge dual operator ∗ on
⊕

k

∧2k
V is defined for α ∈

∧2k
V by ∗(α) = β, where β is the

unique antisymmetric (n− 2k)-tensor so that

α ∧ β =
Pf(2k)(α)

(n/2k)!
v1 ∧ · · · ∧ vn.

It turns out that in some cases, an antisymmetric 2k-tensor α has a complementary anti-
symmetric 2k-tensor α′ with the property that

exp(α) = ∗[exp(α′)],

in which case the coefficients of α contain essentially the same information as those of
α′. Remarkably, if α is an antisymmetric 2-tensor with Pf(α) 6= 0 (corresponding to an
invertible antisymmetric matrix A), then the complement α′ always exists and corresponds
to the matrix inverse of A.

Now, the Cauchy-Binet formula for Hyperpfaffians is equivalent to the observation that
the k-homogeneous component of exp(ω) is given by

ω∧k

k!
=
∑
I

PfL(ωI)

where the sum is taken over all k-element subsets I ⊂ {1, 2, . . . , N}, and where ωI is
called the I-minor of ω and denotes the L-formed obtained by setting the basis vectors
corresponding to i 6∈ I to 0.

Meanwhile, the Laplace Expansion for Hyperpfaffians arises by combining the Cauchy-
Binet Formula with observation that if ω ∈

∧L
V and α ∈

∧K
V with ω = α∧k, then

Pf(L)(ω) = Pf(K)(α).
By combining the equation exp(α) = ∗[exp(α′)] with the Cauchy-Binet formula, the

Hyperpfaffians of minors of α can be expressed in terms of the Hyperpfaffians of minors
of α′. In particular, when α is an antisymmetric 2-tensor, this result is equivalent to the
Jacobi Minor Inverse Formula for Pfaffians.

In the language of the exterior algebra, the Pfaffian Sylvester Identity can be restated
as

Pf(ζ ′ +B · α)

Pf(ζ ′)
=

Pf(α′ +BT · ζ)

Pf(α′)
for α, ζ ∈

2∧
V and B ∈ Mn(R)
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where B · α denotes the antisymmetric 2-tensor given by

B · α =
∑
i<j

αij (Bvi) ∧ (Bvj) when α =
∑
i<j

αij vi ∧ vj .

But more generally, by using the Hyperpfaffian in place of the Pfaffian, the same identity
also holds for antisymmetric L-tensors α and ζ, provided that the complements of α and ζ
exist.

1.4 Directions for Further Research

Recalling the method of Tracy and Widom, a streamlined proof of the Pfaffian formu-
lation for the correlation functions of β-ensembles uses the Sylvester Identity rewrite the
partition function ZN (β) as a generating function for the correlation functions with determi-
nant/Pfaffian coefficients. But the existence of a Hyperpfaffian formulation for the partition
function β = L2, along with a Sylvester Identity for Hyperpfaffians, is highly suggestive of
the existence of ‘Hyperpfaffian’ formulations for the β = L2 correlation functions.

At present, the greatest obstacle to obtaining these Hyperpfaffian correlation functions
is the observation that a generic antisymmetric L-tensor α need not have a complement α′,
and hence, Sylvester Identity might not apply to the the particular L-forms corresponding
to the β-ensembles might not

But this may not be an insurmountable problem, since the antisymmetric L-tensors
that arise from the β-ensemble model are highly non-generic. Indeed, several directions for
further investigation are possible:

1. Since the the partition function ZN (β) depends only on the Hyperpfaffian of an L-
tensor (and not the L-tensor itself), it is conceivable that the particular L-tensors
arising from the β-ensemble can be replaced in a deterministic fashion with other
L-tensors which do have complements.

2. Although the general β-ensemble may not readily admit a Hyperpfaffian representa-
tion, it is possible that the circular β-ensembles (which historically are more tractable
than the classic Gaussian ensembles) give rise to L-forms which can be directly com-
puted and chosen in such a way to allow application of the Sylvester identity.

3. Alternatively, there may be other point processes on R (either naturally arising or
contrived for this purpose) whose associated L-tensors are reasonably well-behaved.
It may then be possible to approximate the β-ensemble point processes using these
‘Hyperpfaffian’ models.
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