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My research lies in the intersection of Probability, Statisitics, and Mathematical Physics, in the field of
Random Matrix Theory. Currently I study the solvability of S-ensembles of random matrices for integer
values of 8 beyond 1, 2 and 4, along with their applications to statistical theoryE

Background

Random matrix theory is the study of the eigenvalue statistics of ensembles of matrices, which are a collection
of (typically) square matrices along with a probability measure defined on this set, which in turn, induces
a probability measure on the eigenvalues of the matrix. Although a rich field of study on its own, random
matrix theory also enjoys rather abundant application throughout mathematics, statistics and physics, since
the eigenvalue statistics of many matrix ensembles can be used to model a wide variety of phenomena,
including the statistics of discrete energy levels in atomic spectra [9], the dynamics of a multi-particle system
interacting via a repulsive force [2], and the estimates of the covariance matrix for a population vector [10].
The widespread applicability of random matrices evinces a universal paradigm—a collection of theorems akin
to the classical Central Limit Theorem [5]. But the utility of such theorems depends on an available supply
of solvable ensembles in each universality class—collections of matrices for which the densities of eigenvalues
can be expressed in terms of ‘known’ functions whose properties and asymptotics are well-studied.

The S-ensembles are one such collection, and are composed of random matrices whose eigenvalue densities
take a common form, indexed by a non-negative, real parameter (:

pn(Z1,...,2N) = m 1:[ lzj — $i|ﬂ Hw(l‘i) (1)

where w(z) is a specified probability density (often Gaussian, but not necessarily) and where Zy(3) denotes
the partition function of 3, and is the normalizing constant required for py to be a probability density
function. It turns out that the classic S-ensembles (8 = 1, 2,4 with w(z) = exp(—%z) describe the eigenvalue
distributions of Hermitian matrices with real, complex, or quaternionic Gaussian entries [5].

The 8 = 2 ensemble is an example of a determinantal point process (meaning the densities can be obtained
as the determinant of a matrix whose entries are given by a two variable kernel function), while the g = 1,4
ensembles are examples of Pfaffian point processes (meaning the densities can be obtained as the Pfaffian of
an antisymmetric matrix whose entries are given by a kernel function). For present purposes, it suffices to
define the Pfaffian as a square root of the determinant (although it should be noted that there are other,
equivalent definitions which turn out to be more amenable to algebraic manipulation).

Of fundamental concern in the theory of random matrices is the behavior of eigenvalue statistics of matrix
ensembles as N — co. The immediate advantage of aforementioned determinantal and Pfaffian formulations
for the density functions is that the fundamental characteristics of the eigenvalues are encoded in the kernel
functions, which do not essentially increase in complexity as N grows large, and which can be expressed as
a sum whose asymptomatics are well-understood.

Consider, for example, the sample covariance matrix formed from a large sample of random vectors, and
suppose we are interested in the eigendecomposition of this matrix (for the purposes of principal component
analysis, for example). Assuming that the eigenvalue for this random matrix are approximately distributed
according to the distribution of eigenvalues for a S-ensemble of matrices (which, by the universality paradigm
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described above, holds with remarkable frequency), then the asymptotic distribution for the /S-ensemble
eigenvalues also well-approximates the eigenvalue distribution for the covariance matrix. But the former is
eminently accessible, thanks to the determinantal /Pfaffian formulation.

More generally, S-ensembles for values of 8 not equal to 1, 2, or 4 may also possess analogous determi-
nant /Pfaffian kernel formulations. My current research uses tools from the exterior and shuffle algebras in
order to unify the structure of the § = 1, 2,4 ensembles, with eventual goal of representing S-ensembles as
Hyperpfaffian point processes when (3 is an arbitrary square integer.

Current Work

In the classical cases (8 = 1,2,4), the first step to rewriting the density functions as a determinant/Pfaffian is
to observe that the partition function Zy(f) is itself a determinant/Pfaffian. Then, using the Cauchy-Binet
Formula and a Sylvester Identity for matrices, it can be shown that the generating function for the density
functions has determinantal /Pfaffian coefficients.

In order to extend this result more generally to the case when [ is a square integer, it is helpful to recast
the problem in a more algebraic light. Of chief concern are the exterior and shuffle algebras. The former is
obtained from the tensor algebra by imposing the relation a ® b = —b ® a, while the latter is obtained by
endowing the tensor algebra with an additional multiplication, where the product of two tensors is taken to
be the sum of all tensors obtained by interlacing the two.

e In [0], I show that when § is a square integer, techniques in the shuffle algebra can be used to write
the partition function as the Hyperpfaffian of an antisymmetric tensor, which is a higher-dimensional
analogue of the Pfaffian of an antisymmetric matrix. This partition function can then be used to model
the electrostatics distribution of charged particles that are confined to a line, interact with pairwise
logarithmic repulsion, and are in thermal equilibrium with temperature 3~!.

e More generally, in [], we show that an analogous result holds when 3 is allowed to depend on the choice
of indices (i, j) in the product in As above, this partition function models the electrostatic
distribution of charged particles with logarithmic repulsion, but where particles are allowed to have
distinct charges.

The existence of this Hyperpfaffian representation for the partition function suggests that the eigenvalue
density functions also may admit a Hyperpfaffian representation (just as the observation that the partition
function is a Pfaffian when 8 = 1,4 is the first step in showing that the density functions can be written
as Pfaffians). And indeed, there are Hyperpfaffian analogues for the algebraic tools used to show that
the 8 = 1,4 density functions are Pfaffians. Unfortunately, it appears that the Sylvester Identity trick (a
fundamental maneuver for the Pfaffian case) applies only to antisymmetric tensors which can be written in a
certain ‘invertible’ form after a suitable change of basis, and this is not possible for a general antisymmetric
tensor.

Directions for Future Research

The ‘invertible’ element obstacle described above is not insurmountable problem, however, since the anti-
symmetric tensors that arise from the [-ensemble model are highly non-generic. Indeed, I have recently
focused on several directions for further research:

1. Since the the partition function Zx(8) depends only on the Hyperpfaffian of an L-tensor (and not the
L-tensor itself), the particular L-tensors arising from the -ensemble may be replaced in a deterministic
fashion by other antisymmetric tensors which can be ‘inverted’.
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2. Although the general S-ensemble may not readily admit a Hyperpfaffian representation, it is possible
that the circular S-ensembles (which historically are more tractable than the classic Gaussian ensem-
bles) give rise to antisymmetric tensors which can be directly computed and chosen in such a way to
allow application of the Sylvester identity.

3. Alternatively, there may be other point processes on R (either naturally arising or contrived for this
purpose) whose associated antisymmetric tensors are reasonably well-behaved. It may then be possible
to approximate the S-ensemble point processes using these ‘Hyperpfaffian’ models.

A first step towards investigating the first and second topic above involves determining necessary and suffi-
cient conditions for the ‘invertibility’ of an antisymmetric tensor. This will likely need to be done both for
the case of generic tensors, as as for the cases when the tensor coefficients arise from the S-ensemble models.
While the formal computations involving particular sums of powers of these antisymmetric tensors are in-
tractably cumbersome, much of the complexity can be shed by instead simulating ‘values’ of these sums for
large samples of randomly selected antisymmetric tensors and analyzing the results using appropriate data
visualization techniques. Essentially, we may be able to understand the distribution of these tensor powers
via classic Monte Carlo methods. During the summer of 2020, I worked alongside J. Li, a Reed student
supported by the Reed College Science Research Fellowship, on a project investigating the dynamics and
stochastic behavior of these tensor powers. Our results are summarized in a forthcoming paper, currently in
preparation [7].

Based on prior work, in order to address the third topic above, it seems fruitful to further investigate
statistical inference procedures for distinguishing between non-homogeneous Poisson point processes and
determinantal and Pfaffian point processes, as well as procedures for estimating the parameters of S-ensemble
distributed points. Ultimately, my goal is to obtain, visualize, and analyze data from B-ensemble point
processes when [ is square integer in order to determine the essential characteristics for ‘Hyperpfaffian point
processes.’

Undergraduate Reading and Research Projects

During my previous two years as a Visiting Assistant Professor of Statistics at Reed College, I advised seven
year-long senior thesis projects in probability, statistics, computer science and economics, and am currently
supervising an additional four projects on topics arising from the intersection of my research experience
and the students’ own academic interests. Previous to this, as a graduate student at the University of
Oregon, I supervised six multi-term undergraduate reading and research projects, in conjunction with the
UO Association for Women in Mathematics Undergraduate Reading Program and the University of Oregon
Directed Reading program. Brief descriptions of a selection of these projects are given below:

1. One project analyzes optimal decision-making and long-term trends in a series of competitive games
with asymmetric roles in which players are allowed to modify strategy and choice of role between games.
The student modeled these series a non-linear discrete time stochastic processes and investigated the
mixing time, stationary and ergodic properties, and robustness of these processes.

2. Another project was less conventional, and arose out of the student’s interest in Sudoku puzzles. The
set of ‘solved’ Sudoku puzzles (9 x 9 grids filled with the numbers 1 through 9 so each row, column,
and principle 3 x 3 sub-grid contains each value exactly once) can be viewed as a particular subset
of the collection of doubly stochastic matrices. Using techniques from statistics, group theory, and
random matrices, the student and I developed an algorithm for generating a sufficiently rich ensemble
of Sudoku matrices. Using this algorithm, we conducted an empirical investigation of the eigenvalue
and trace behavior for a randomly chosen Sudoku matrix.
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3. A second project investigated the collaboration and citation networks among R&D firms and univer-
sities, explored the graph-theoretic characteristics of these networks in order to predict the impact of
research innovations and advancement in specific disciplines. The student used Markov chain techniques
to perform exploratory data analysis on these networks and used the results to create a multivariate
regression model relating citation connectivity to degree of innovation.

4. A third project studied the Tracy-Widom distribution, which arises in random matrix theory as the
limiting law for the largest eigenvalue of a Hermitian matrix with independent Gaussian entries. In
particular, after an in-depth literature review, the student codified procedures for performing hypothesis
testing with the Tracy-Widom distribution as part of a novel non-parametric test for independence.

5. A recent project investigated latent structure random graphs, where rather than assuming that vertices
are connected via an edge independently with constant probability (in the manner of the Erdés-Réyni
random graph), instead vertices are connected with heterogeneous probability that depends on the
location of those points in a corresponding latent space. Much of the initial structure of the project
was based on the recent paper by A. Athreya et al. [1].

In addition to the current and past projects outlined above, I have given careful consideration to several
topics in mathematics, statistics, and mathematical physics related to my research program which would be
amenable to undergraduate collaboration or independent study. A small selection of these topics follow.

1. Statistical inference procedures for Poisson point processes have been relatively well-studied, but anal-
ogous procedures for determinantal and Pfaffian processes are considerably less developed. I would
like to work with a student with significant theoretical statistics background to develop criteria for
identifying real-world phenemona which can be modeled as determinantal/Pfaffian point processes, as
well creating hypothesis testing procedures for distinguishing between these types of processes.

2. Under the Boltzman statistics paradigm, a wealth of information about a particle system’s behavior
is encoded in the partition function (or the ensemble average) But in certain cases when the sys-
tem behaves like a log-Coulomb gas, this partition function can be represented in a particularly nice
algebraic form given in terms of the particle positions. I would like to work with a student with al-
gebra or combinatorics background to explore some of the combinatorial identities that arise in these
computations.

3. A classic result due to Karlin and McGregor [4] shows that for certain non-intersecting random walks,
the distribution of points midway along a path can be represented by a determinantal process. A
recent result by Garrod et al.[3] demonstrates that a class of annihilating/coalescing random walks
can represented as a Pfaffian point process. I would like to work with a student with significant
probability and stochastic process background to determine whether random walk models exist for
arbitrary (-ensemble-like covariance structure.
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